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Abstract. Recently, Yekutieli introduced projective dimension, injective dimension
and flat dimension of DG-modules by generalizing the characterization of projective
dimension and injective dimension of ordinary modules by vanishing of Ext-group. In
this paper, we introduce DG-version of projective resolution and injective resolution for
DG-modules over a connective DG-algebra which are different from known DG-version
of projective, injective and flat resolutions. An important feature of these resolutions is
that, roughly speaking, the “length” of these resolutions give projective, injective or flat
dimensions. We show that these resolutions allows us to investigate basic properties of
projective and injective dimensions of DG-modules. As an application we introduce the
global dimension of a connective DG-algebra and show that finiteness of global dimension
is derived invariant.

1. Introduction

Differential graded (DG) algebra lies in the center of homological algebra and allows
us to use techniques of homological algebra of ordinary algebras in much wider context.
The projective resolutions and the injective resolutions which are the fundamental tools
of homological algebra already have their DG-versions, which are called a DG-projective
resolution and a DG-injective resolution. The aim of this paper is to introduce a different
DG-versions for DG-modules over a connective DG-algebra. The motivation came from
the projective dimensions and the injective dimensions for DG-modules introduced by
Yekutieli.

We explain the details by focusing on the projective dimension and the projective reso-
lution. Let R be an ordinary algebra. One of the most fundamental and basic homological
invariant for a (right) R-moduleM is the projective dimension pdR M . Avramov-Foxby [1]
generalized the projective dimension for an object of the derived category M ∈ D(R). Re-
cently, Yekutieli [3] introduced the projective dimension pdR M for an object ofM ∈ D(R)
in the case where R is a DG-algebra from the view point that the number pdR M measures
how the functor RHomR(M,−) changes the amplitude of the cohomology groups.

Let R be an ordinary ring and M an R-module, again. Recall that the projective
dimension pdR M is characterized as the smallest length of projective resolutions P•

0 → Pd → Pd−1 → · · · → P1 → P0 → M → 0.

There are the notion of DG-projective resolution, which is also called projectively cofibrant
replacement and so on, which is a generalization of a projective resolution for a DG-module
M over a DG-algebra R. However, it is not suitable to measure the projective dimension.
The aim of this paper is to introduce a notion of a sup-projective (sppj) resolution of an
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object of M ∈ D(R) which can measure the projective dimension, in the case where R is
a connective (=non-positive) DG-algebra.

Recall that a (cohomological) DG-algebra R is called connective if the vanishing condi-
tion H>0(R) = 0 of the cohomology groups is satisfied. There are rich sources of connective
DG-algebras: the Koszul algebra KR(x1, · · · , xd) in commutative ring theory, and an en-
domorphism DG-algebra RHom(S, S) of a silting object S. We would like to point out
that a commutative connective DG-algebras are regarded as the coordinate algebras of
derived affine schemes in derived algebraic geometry (see e.g. [2]).

Let R be a connective DG-algebra. We set P := AddR ⊂ D(R) to be the additive
closure of R inside D(R). Namely, P is the full subcategory consisting of M ∈ D(R)
which is a direct summand of some coproduct of R. In sppj resolution, P plays the role
of projective modules in the usual projective resolution.

A sppj resolution P• of M ∈ D<∞(R) is a sequence of exact triangles {Ei}i≥0

Ei : Mi+1
gi+1−−→ Pi

fi−→ Mi →

such that fi is a sppj morphism (Definition 6), where we set M0 := M . We often exhibit
a sppj resolution P• as below by splicing {Ei}i≥0

P• : · · · → Pi
δi−→ Pi−1

δi−1−−→ · · · → P1
δ1−→ P0 → M

where we set δi := gifi. It is analogous to that in the case where R is an ordinary algebra,
a projective resolution P• of an R-module M is constructed by splicing exact sequences

0 → Mi+1 → Pi → Mi → 0

with Pi projective.
We state the main result which gives equivalent conditions of pdM = d.

Theorem 1 (Theorem 10). Let M ∈ D<∞(R) and d ∈ N a natural number. Then the
following conditions are equivalent

(1) pdM = d.
(2) For any sppj resolution P•, there exists a natural number e ∈ N which satisfying

the following properties
(a) Me belongs to P [− supMe].
(b) d = e+ supP0 − supMe.
(c) The structure morphism ge : Me → Pe−1 is not a split-monomorphism.

(3) M has sppj resolution P• of length e which satisfies the following properties.

Pe
δe−→ Pe−1

δe−1−−→ · · ·P1
δ1−→ P0

f0−→ M

(a) d = e+ supP0 − supPe.
(b) The e-th differential δe is not a split-monomorphism.

(4) The functor F = RHom(M,−) sends the standard heartModH0(R) to D[− supM,d−supM ](R)
and there exists N ∈ ModH0 such that Hd−supM(F (N)) ̸= 0.

(5) d is the smallest number which satisfies

M ∈ P [− supM ] ∗ P [− supM + 1] ∗ · · · ∗ P [− supM + d].



The condition (4) tells that the projective dimension of M can be measured by only
looking the standard heart ModH0(R) of the derived category D(R). The condition (5)
says that the projective dimension pdM is the smallest number of extensions by which
we obtain M from the “projective objects” P (see Definition 5).

We introduce the global dimension gldimR of a connective DG-algebra R. For an
ordinary ring R, a key result to define the global dimension gldimR is that the supremum
of the projective dimensions pdM of all R-modulesM and that of the injective dimensions
injdimM coincide. We provide a similar result for a connective DG-algebra R. It is well-
known that the ordinary global dimensions is not preserved by derived equivalence, but
their finiteness is preserved. We prove the DG-version of this result.

1.1. Notation and convention. The basic setup and notations are the followings.
Throughout the paper, we fix a base commutative ring k and (DG, graded) algebra is

(DG, graded) algebra over k. We denote by R = (R, ∂) a connective cohomological DG-
algebra. Recall that “connective” means that H>0(R) = 0. We note that every connective
DG-algebra R is quasi-isomorphic to a DG-algebra S such that S>0 = 0. Since quasi-
isomorphic DG-algebras have equivalent derived categories, it is harmless to assume that
R>0 = 0 for our purpose.

For notational simplicity we set H := H(R) and H0 := H0(R).
We denotes by C(R) the category of DG-R-modules and cochain morphisms, by K(R)

the homotopy category of DG-R-modules and by D(R) the derived category of DG R-
modules. The symbol Hom denotes the Hom-space of D(R).

Let n ∈ {−∞}∪Z∪{∞}. The symbols D<n(R), D>n(R) denote the full subcategories
of D(R) consisting of M such that H≥n(M) = 0, H≤n(M) = 0 respectively. We set
D[a,b](R) = D≥a(R) ∩ D≤b(R) for a, b ∈ {−∞} ∪ Z ∪ {∞} such that a ≤ b. We set
Db(R) := D<∞(R) ∩ D>−∞(R).

2. Projective dimension of DG-modules and sppj resolution

2.1. Projective dimension of M ∈ D(R) after Yekutieli. We recall the definition of
the projective dimension of M ∈ D(R) introduced by Yekutieli.

Definition 2 ([3, Definition 2.4]). Let a ≤ b ∈ {−∞} ∪ Z ∪ {∞}.
(1) An object M ∈ D(R) is said to have projective concentration [a, b] if the functor

F = RHomR(M,−) sends D[m,n](R) to D[m−b,n−a](k) for any m ≤ n ∈ {−∞} ∪
Z ∪ {∞}.

F (D[m,n](R)) ⊂ D[m−b,n−a](k).

(2) An object M ∈ D(R) is said to have strict projective concentration [a, b] if it has
projective concentration [a, b] and does’t have projective concentration [c, d] such
that [c, d] ⊊ [a, b].

(3) An object M ∈ D(R) is said to have projective dimension d ∈ N if it has strict
projective concentration [a, b] for a, b ∈ Z. such that d = b− a.
In the case where, M does’t have a finite interval as projective concentration,

it is said to have infinite projective dimension.
We denote the projective dimension by pdM .



The following observations are useful.

Lemma 3. If M ∈ D(R) has finite projective dimension, then it belongs to D<∞(R).

Lemma 4. An object M ∈ D<∞(R) has projective dimension d if and only if it has strict
projective concentration [supM − d, supM ].

2.2. The class P and sup-projective (sppj) resolution. We introduce a class P of
DG-modules which plays a role of the class of projective modules.

Definition 5. We denote by P ⊂ D(R) the full subcategory of direct summands of a
direct sums of R. In other words, P = AddR.

We give the definition of a sup-projective (sppj) resolution of M ∈ D<∞(R).

Definition 6 (sppj morphism and sppj resolution). Let M ∈ D<∞(R),M ̸= 0.

(1) A sppj morphism f : P → M is a morphism in D(R) such that P ∈ P [− supM ]
and the morphism HsupM(f) is surjecitve.

(2) A sppj morphism f : P → M is called minimal if the morphism HsupM(f) is a
projective cover.

(3) A sppj resolution P• of M is a sequence of exact triangles for i ≥ 0 with M0 := M

Mi+1
gi+1−−→ Pi

fi−→ Mi

such that fi is sppj.
The following inequality folds

supMi+1 = supPi+1 ≤ supPi = supMi.

For a sppj resolution P• with the above notations, we set δi := gi−1 ◦ fi.

δi : Pi → Pi−1.

Moreover we write

· · · → Pi
δi−→ Pi−1 → · · · → P1

δ1−→ P0 → M.

(4) A sppj resolution P• is said to have length e if Pi = 0 for i > e and Pe ̸= 0.
(5) A sppj resolution P• is called minimal if fi is minimal for i ≥ 0.

The following two lemmas give a motivation to introduce sppj resolutions.

Lemma 7. Let M ∈ D<∞(R) and f : P → M a sppj morphism and N := cone(f)[−1]
the cocone of f . Then the following assertions hold.

(1) Assume that 1 ≤ pdM . Then, pdN = pdM − 1− supM + supN .
(2) Assume that pdM = 0. Then f is a split-epi morphism and hence M is a direct

summand of P .

An important consequence is the following.

Corollary 8. Let M ∈ D(R) \ {0}. Then pdM = 0 if and only if M ∈ P [− supM ].



2.3. Projective dimension and the length of sppj-resolutions.

Theorem 9. Let M ∈ D<∞(R) and d ∈ N a natural number. Then, the following
conditions are equivalent

(1) pdM ≤ d.
(2) For any sppj resolution P•, there exists a natural number e ∈ N such that Me ∈

P [− supPe] and e+ supP0 − supMe ≤ d. In particular, we have a sppj resolution
of length e.

Me → Pe−1 → Pe−2 → · · ·P1 → P0 → M.

(3) M has sppj resolution P• of length e such that e+ supP0 − supPe ≤ d.
(4) The functor F = RHom(M,−) sends the standard heartModH0 to D[− supM,d−supM ](R).
(5) M belongs to P [− supM ] ∗ P [− supM + 1] ∗ · · · ∗ P [− supM + d].

Theorem 10. Let M ∈ D<∞(R) and d ∈ N a natural number. Then the following
conditions are equivalent

(1) pdM = d.
(2) For any sppj resolution P•, there exists a natural number e ∈ N which satisfying

the following properties
(a) Me ∈ P [− supMe].
(b) d = e+ supP0 − supMe.
(c) ge is not a split-monomorphism.

(3) M has sppj resolution P• of length e which satisfies the following properties.
(a) d = e+ supP0 − supPe.
(b) δe is not a split-monomorphism.

(4) The functor F = RHom(M,−) sends the standard heartModH0 to D[− supM,d−supM ](R)
and there exists N ∈ ModH0 such that Hd−supM(F (N)) ̸= 0.

(5) d is the smallest number which satisfies

M ∈ P [− supM ] ∗ P [− supM + 1] ∗ · · · ∗ P [− supM + d].

Remark 11. Injective dimension injdimM of DG-module M was defined in a similar way
in [3]. Inf-injective (ifij) resolution is defined in a similar way. Almost all properties can be
proved in dual ways of projective dimensions and sppj-resolution. However to introduce
the class I, which is the counterpart of the class P , we need to work.

3. Global dimension

We introduce the notion of the global dimension of a connective DG-algebra R.

Theorem 12. Let R be a connective DG-algebra. Then the following numbers are the
same.

(1) sup{pdM − ampM | M ∈ D<∞(R)}
(2) sup{pdM | M ∈ ModH0}
(3) sup{injdimM − ampM | M ∈ D>−∞(R)}
(4) sup{injdimM | M ∈ ModH0}
This common number is called the (right) global dimension of R and is denoted as

gldimR.



We point out the following

Remark 13. For any connective DG-algebra, we have

sup{pdM | M ∈ D<∞} = ∞,

since pd(R⊕R[n]) = n for n ∈ N.

Observe that if R is an ordinary algebra, then the global dimension defined in Theorem
12 coincides with the ordinary global dimension. The ordinary global dimensions is not
preserved by derived equivalence, but their finiteness is preserved. We prove the DG-
version.

Let R and S be connective DG-algebra. Assume that they are derived equivalent to
each other. Namely, there exists an equivalence D(R) ≃ D(S) of triangulated categories,
by which we identify D(R) with D(S).

Proposition 14. Under the above situation the following assertions hold.

(1) pdS R < ∞.
(2) gldimS ≤ gldimR + pdS R.
(3) gldimR < ∞ if and only if gldimS < ∞.

At the end of the proceeding, we give an answer to one of the question from Prof.
Kikumasa in the symposium.

Proposition 15. For a connective DG-algebra R, the following conditions are equivalent.

(1) gldimR = 0.
(2) R is an ordinary algebra (i.e., H<0 = 0) which is semi-simple.
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